Томограмма для урана и золота: как мюоны помогают геологам

Российские ученые разработали прибор, определяющий плотность объектов в разведочной скважине. В перспективе он поможет значительно сократить затраты на буровые работы. Рассказываем, как мюоны помогают получать важную геологическую информацию.

Вместо бура

Геологоразведка — ​дело затратное и рискованное. Нужны большие средства, чтобы снарядить экспедицию и провести геологоразведочные работы — ​и это без гарантий, что найдутся богатые залежи. Самый достоверный источник геологической информации — ​образцы горной массы, керн. Его извлекают из разведочных скважин. Сейчас один погонный метр бурения стоит 12–25 тыс. рублей, и цена продолжает расти. Заказчики стремятся снизить затраты, используя геофизические и геохимические методы. Один из новейших — ​мюонная томография.

Идея приспособить поток мюонов для нужд геологоразведки возникла давно, реализовали ее лишь несколько лет назад, протестировав в Канаде на урановых месторождениях. «Мы с коллегами из Троицка обсудили возможность применить этот метод на наших объектах, и специалисты взялись за разработку», — ​рассказывает заместитель гендиректора Эльконского горно-металлургического комбината (ГМК) по стратегическому развитию Юрий Трубаков. В 2023–2024 годах в рамках единого отраслевого тематического плана выполнили первый этап научно-исследовательских и опытно-конструкторских работ. Заказчик — ​Эльконский ГМК (входит в контур управления компании «Росатом Недра»), исполнитель — ​научный институт в Троицке, изготовивший полнофункциональный образец мюонного томографа из четырех модулей.

На глубине…

Модуль — ​это трубка из нержавеющей стали длиной 2,4 м и диаметром 89 мм. В ней размещен позиционно-чувствительный детектор — ​сцинтилляционное оптоволокно, кремниевые фотоумножители (SiPM), электронная система управления и считывания сигналов с первичной обработкой данных, а также электронный компас с инклинометром, который фиксирует отклонение скважины от вертикали.

В скважине можно установить один или несколько модулей на разной глубине. Действуют они независимо друг от друга. При встрече мюона с оптоволокном выделяется энергия и высвечиваются фотоны. Их регистрирует кремниевый фотоумножитель. Детектор восстанавливает и передает на мобильную вычислительную станцию траекторию всех зарегистрированных мюонов.

Прибор детектирует мюоны в пределах конуса, вершина которого — ​детектор в скважине, а основание — ​на поверхности. У детекторов на разной глубине разная геометрия конусов. Создается несколько двумерных угловых проекций. Проекции из соседних скважин пересекаются, что улучшает точность трехмерной картины распределения плотности.

«Физический принцип мюонной радиографии основан на ослаблении мюонного потока в недрах из-за электромагнитных процессов: ионизации, тормозного излучения, рождения электрон-позитронных пар, — ​рассказывает научный руководитель проекта Александр Голубев. — ​Энергетические потери заряженных частиц, вызванные ионизационными процессами за счет кулоновского взаимодействия с электронами атомов среды, пропорциональны отношению эффективного атомного заряда к эффективному атомному весу вещества, где происходит торможение. Поэтому прохождение через вещество с большим зарядовым числом приводит к большему ослаблению и, следовательно, изменению интенсивности потока мюонов в этой области».

Чем ближе к поверхности детектор, тем больше мюонов он регистрирует в единицу времени. Чем дальше — ​тем меньше мюонов доходит до детектора. Так, на глубине порядка 50 м детектор набирает необходимый объем статистических данных за несколько дней, ниже — ​за несколько недель. Впрочем, «необходимый» — ​понятие относительное: чем дольше стоит детектор, тем больше данных и тем точнее результат.

…и на поверхности

Программное обеспечение ученых троицкого института обрабатывает данные нескольких проекций и реконструирует распределение плотности в трех измерениях. Томографическая реконструкция — ​это параллелепипед. По вертикали он строится от нижнего детектора до высшей точки на поверхности. Максимальная длина по горизонтали — ​400 м. Чудес ждать не стоит, геолог не увидит на экране мобильной вычислительной станции слов «золото» или «уран». На нем будут визуализированы объекты различной плотности и определены средние плотности горной массы в каждой элементарной ячейке — ​на них делится моделируемый объем. Визуализация возможна в трех измерениях и в двух, в виде срезов.

Образец томографа проверили в институте на ударном генераторе. «Он расположен на бетонном основании высотой около 6 м, да и сам по себе немаленький, внутри катушка и прочее оборудование», — ​рассказывает Александр Голубев. За четыре дня построены угловые гистограммы распределения плотности, точность определения средней плотности — ​лучше 5 %. Иначе говоря, если разница в массовой толщине более 5 %, прибор зафиксирует различие. На основе измерения потока мюонов была выполнена трехмерная реконструкция формы и плотности тестового объекта.

Проверили работоспособность мюонного томографа и на его цифровом двойнике. Модель, куда ввели данные из геологической карты, определила положение браннеритового пласта (браннерит — ​урансодержащий минерал) во вмещающих породах.

Заказчики результатом довольны. Полевые испытания намечены на 2025–2026 годы. Скважинную мюонную томографию проведут на золото­урановом месторождении Элькон. «Задача — ​подтвердить, что данные мюонной томографии совпадают со сведениями, полученными обычными методами. Затем — ​утверждение методики в Роснедрах, чтобы Государственная комиссия по запасам, ГКЗ, принимала данные мюонной томографии. Тогда метод можно будет использовать при постановке запасов на баланс и утверждении технико-экономического обоснования временных и постоянных кондиций», — ​объясняет Юрий Трубаков. Элькон выбран потому, что на нем по требованию ГКЗ необходимы дополнительные геологоразведочные работы (месторождение открыли в начале 1960‑х, и нынешний этап освоения будет четвертой попыткой). Кроме того, Эльконский ГМК планирует испытать мюонную томографию на месторождениях золота.

По замыслу троицких ученых, их прибор должен снизить затраты на бурение. Так, при обычном разбуривании 1 км2 по сети 100×100 м требуется 100 скважин. Благодаря просвечиванию недр количество скважин можно сократить до 10.

Справка

Мюон часто называют тяжелым электроном: по характеристикам эти элементарные частицы очень похожи, только мюон в 207 раз массивнее. На Земле мюоны преобладают в потоке вторичного космического излучения — ​как продукт распада заряженных пи-и ка-мезонов, образующихся при взаимодействии частиц первичного космического излучения с ядрами атомов верхних слоев атмосферы.

Мюоны нестабильны и в собственной системе отсчета живут чуть больше 2 мкс, но к нам они прилетают с субсветовыми скоростями, поэтому по часам земного наблюдателя проживают как минимум на порядок дольше, успевая не только пройти всю атмосферу, но и проникнуть глубоко под землю.

Поделиться
Есть интересная история?
Напишите нам
Читайте также: